Adaptation of children's speech with limited data based on formant-like peak alignment
نویسندگان
چکیده
Automatic recognition of children s speech using acoustic models trained by adults results in poor performance due to differences in speech acoustics. These acoustical differences are a consequence of children having shorter vocal tracts and smaller vocal cords than adults. Hence, speaker adaptation needs to be performed. However, in real-world applications, the amount of adaptation data available may be less than what is needed by common speaker adaptation techniques to yield reasonable performance. In this paper, we first study, in the discrete frequency domain, the relationship between frequency warping in the frontend and corresponding transformations in the back-end. Three common feature extraction schemes are investigated and their transformation linearity in the back-end are discussed. In particular, we show that under certain approximations, frequency warping of MFCC features with Mel-warped triangular filter banks equals a linear transformation in the cepstral space. Based on that linear transformation, a formant-like peak alignment algorithm is proposed to adapt adult acoustic models to children s speech. The peaks are estimated by Gaussian mixtures using the Expectation-Maximization (EM) algorithm [Zolfaghari, P., Robinson, T., 1996. Formant analysis using mixtures of Gaussians, Proceedings of International Conference on Spoken Language Processing, 1229–1232]. For limited adaptation data, the algorithm outperforms traditional vocal tract length normalization (VTLN) and maximum likelihood linear regression (MLLR) techniques. 2005 Elsevier Ltd. All rights reserved. 0885-2308/$ see front matter 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.csl.2005.05.004 * Corresponding author. Tel.: +1 310 206 2231; fax: +1 310 206 4685. E-mail addresses: [email protected] (X. Cui), [email protected] (A. Alwan). X. Cui, A. Alwan / Computer Speech and Language 20 (2006) 400–419 401
منابع مشابه
MLLR-like speaker adaptation based on linearization of VTLN with MFCC features
In this paper, an MLLR-like adaptation approach is proposed whereby the transformation of the means is performed deterministically based on linearization of VTLN. Biases and adaptation of the variances are estimated statistically by the EM algorithm. In the discrete frequency domain, we show that under certain approximations, frequency warping with Mel-£lterbank-based MFCCs equals a linear tran...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملStatistical Variation Analysis of Formant and Pitch Frequencies in Anger and Happiness Emotional Sentences in Farsi Language
Setup of an emotion recognition or emotional speech recognition system is directly related to how emotion changes the speech features. In this research, the influence of emotion on the anger and happiness was evaluated and the results were compared with the neutral speech. So the pitch frequency and the first three formant frequencies were used. The experimental results showed that there are lo...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملA method for glottal formant frequency estimation
This study presents a method for estimation of glottal formant frequency (Fg) from speech signals. Our method is based on zeros of z-transform decomposition of speech spectra into two spectra : glottal flow dominated spectrum and vocal tract dominated spectrum. Peak picking is performed on the amplitude spectrum of the glottal flow dominated part. The algorithm is tested on synthetic speech. It...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Speech & Language
دوره 20 شماره
صفحات -
تاریخ انتشار 2006